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Approximate expressions for the beta-neutrino angular correlation coefficient  

 

I.S. Towner  and  J.C. Hardy 

 

Recently [1], an ‘exact’ calculation of the beta-neutrino angular correlation coefficient for 21Na 

was published.  The coefficient is defined as 

 

aeν (W ) =  + ∆aeν (W )      (1) 

 

with  = (  −  )/(	  + ) being the  major  contribution, where a1  = gV MF  and  c1 = gAMGT  with  

MF   and MGT  being the Fermi  and Gamow-Teller matrix elements  and  gV   and gA  their  respective  

coupling constants.  Here W  is the  electron  total  energy  expressed  in electron  rest-mass  units.   We 

computed  the  correction  ∆aeν  using the exact formalism of Behrens and Bühring (BB) [2] and found 

∆aeν, when averaged  over the electron energy spectrum, gave a correction  of order  1%.  Alternatively 

computing  the  correction  with  the  formalism  of Holstein  [3] we found the correction  to be much 

smaller,  of order 0.1%. To try and resolve this discrepancy we have been working with the BB 

formalism, identifying  the leading order terms  and comparing  them  with those of Holstein. 

The beta decay differential decay rate  is written  in Holstein [3] as 

 

Γ 	 , Ω Ω . . . .   (2) 

 

where   and   are unit  vectors  in the directions  of the electron  and neutrino  respectively.  Here   is 

the maximum value of W , p is the  electron  momentum, with  p2  = W 2 − 1 in electron  rest-mass  units,  

and  F (Z, W ) is the  Fermi function.  The beta-neutrino angular correlation coefficient is defined as 

 

          (3) 

 

In BB [2] the same decay rate is written 

 

Γ 	 Ω Ω . . . .   (4) 

 

and 

 

           (5) 

 

 

Here F0 = 2F (Z, W )/(1 + γ1 ) with γ1 = (1 − (αZ )2)1/2; α is the fine-structure constant and Z  is the charge 

number of the  daughter nucleus,  taken  positive  in electron  decay  and  negative  in positron  decay.  
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Note the  two expressions Eqs. (2) and (4) have different normalizations. This is because BB prefer to 

normalize their electron wave functions  to the value obtained at the origin (L0  represents  the electron 

density  at the origin), whereas Holstein uses the historical normalization at a radius  R (F (Z, W ) 

represents  the electron density  at radius  R).  The relationship between the two is 

 

            (6) 

 

If it is assumed that the electron moves in the Coulomb field of a uniform nuclear  charge-density 

distribution of radius R,  then  to second order in (W R)  and (αZ ), the relationship is [2] 

 

 

  			 1 ,    (7) 

 

where R is given in electron Compton  wavelength  units.  Note that the dimensionless R is a small 

quantity, such that (W R)  and (αZ ) can be considered  expansion  parameters.  

In Holstein’s  formalism  all the  aspects  of nuclear-structure physics  are  encoded  in terms  of a 

few form factors, a(q2), b(q2), c(q2), d(q2), h(q2)  . . . , where q2 is the square  of the four-momentum 

transfer.   On invoking the impulse approximation these can be related to nuclear-structure matrix 

elements calculable in the shell model.  The important ones are:  MF = 〈1〉,	  = 〈 〉 ≅	 〈1〉, MGT = 

〈 〉,   = 〈 〉 ≅ R2〈 〉, M1y  = (16π/5)1/2〈 	 	 〉 and ML = 〈 〉 . It is convenient to express M1y  

in terms  of MGT (valid only for allowed transitions for which MGT does not vanish)  by defining x as 

 

√10          (8) 

 

Our goal is to write the spectral  functions  f1(W ) and f2(W ) introduced in Eq. (2) in terms of the 

four parameters: a1, c1, the weak-magnetism form factor  b, and x. For the present  time,  we have left out 

the relativistic matrix elements denoted  in [3] as Mr.p and Mσrp , while the matrix element MσL vanishes in 

diagonal matrix elements  as would occur in a mirror  transition between  isobaric analogue  states.   We 

have also dropped  the  small pseudoscalar  term  in h(q2) and the second-class current term  in d(q2). 

In the method  of Behrens  and  Bühring [2], all beta-decay observables  are given in terms  of 

quantities MK (ke, kν ) and mK (ke, kν ), which are linear combinations of form factor  coefficients FKLs  and 

electron and neutrino  radial wave functions.  To the extent that these radial wave functions  can be 

computed  exactly,  by solving the appropriate Dirac equation, the formalism can be considered exact.  

Here K is the multipolarity of the transition, L and s are the orbital and spin quantum numbers  

characterising the transition, and ke  and kν are the partial-wave counting  indices for the electron and 

neutrino  radial functions.  For allowed transitions, it is usually sufficient to consider the two lowest 

partial waves, ke,max = 2, kν,max = 2.  The strength of BB’s work, however, is that they  give expansions  of 

the electron  and neutrino  wave functions  in power series of (αZ ), (W R)  and (pν R),  where W  and pν = 
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W0 − W  are the electron  and neutrino  energies in electron rest-mass  units.  These expansions should 

enable us to make contact  with the expressions of Holstein.  We will quote formulae to second order in 

the quantities. 

The form factor coefficients, FKLs, are very similar to Holstein’s form factors and by invoking the 

impulse approximation  they too can be related  to nuclear-structure matrix elements.  To show the 

relationships between Holstein and BB’s expressions  it is convenient  to separate  the  Fermi  and  

Gamow-Teller pieces, f1(W ) =  +  and f2(W ) =  + .		Further, we display  

their  electron  energy dependence  explicitly  by writing  them  as 

  

1  

1 , α = 1,2      (9) 

 

Expressions  for the parameters of these  expansions  are given in Table  I for f1(W ) and in Table  II for 

f2(W ).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table I. Expressions for the spectral function f1(W) derived from the formulations of Holstein and Behrens-
Bühring. 
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For the Fermi  terms,  it is noted  there  is almost  complete  agreement between  the Holstein  and 

BB formalisms; the only difference is in a small B2  coefficient in f2(W ).  For the Gamow-Teller terms, 

we note the following: 

• There are no electromagnetic (αZ ) corrections  to the weak-magnetism terms,  b, in coefficients 

k1  and k2; 

• The coefficient of the matrix-element ratio, x (see Eq. (8)) is in many,  but  not all, instances  

different. 

These differences do not represent errors, but reflect different approximations made in the derivations. 

There is little numerical consequence from these differences.   The correction to the beta-neutrino 

correlation coefficient, ∆aeν , is likely to be small and of order 0.1% from these formulae. 

However, we have not yet included the relativistic terms:  the matrix elements  Mr.p and Mσrp.  

These could lead to terms of comparable size to the terms considered so far.  We also need to do some 

numerical studies on the exact formulation to understand their differences from the approximate formulae.  

Further study is underway. 

 

[1] V.E. Iacob,  J.C.  Hardy,  C.A.  Gagliardi, J. Goodwin,  N. Nica, H.I. Park, G. Tabacaru, L. Trache, 

R.E.  Tribble, Y. Zhai and I.S. Towner, Phys.  Rev. C 74, 015501 (2006). 

[2] H. Behrens  and  W. Bühring, Electron Radial  Wave  Functions and Nuclear  Beta-decay (Clarendon 

Press,  Oxford,1982); H. Behrens,  H. Genz,  M. Conze,  H. Feldmeir, W. Stock  and  A. Richter, 

Ann.  of Phys.  115, 276 (1978).  

[3] B.R.  Holstein, Rev. Mod. Phys.  46, 789 (1974). 

 

Table II. Expressions for the spectral function f2(W) derived from the formulations of Holstein and 
Behrens-Bühring. 

 


